If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w^2+11w+2=0
a = 12; b = 11; c = +2;
Δ = b2-4ac
Δ = 112-4·12·2
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*12}=\frac{-16}{24} =-2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*12}=\frac{-6}{24} =-1/4 $
| 12x-8=20-2x | | -2=-8+2r | | -7+10(a-9)=18 | | 2x^2+5x-17=-1 | | 4(4v-2)=88 | | 2(3z-1)=2(3z−1)=46 | | x/3(2x+7)=33 | | 5x^2−7x=−6x+4 | | -12=-4+4d | | -18=-3b+6b | | 8x-10+4x=30 | | -8/9x+7/10=-119/30 | | 3(z-3)=3(z−3)=9 | | 76=-4(1-5n) | | 6a+5(a-2)+9=-11 | | 3x^2+14x=4x-73x2+14x=4x−7 | | 3(z-3)=3(z−3)=99 | | 96=-4(6n+6) | | t^2+7t−1=0. | | 2(2z+5)=2(2z+5)=50 | | -2y+-14=4 | | 3(5k-1)+5=77 | | -84=-3(6b-2) | | 5-m/2=18 | | -1+2k=2+3k | | 66=-6(-v-5) | | 48=16v | | (5n+20)=(3n+24) | | -12(x-1)=10 | | 8(2-4x)+9=12 | | -6x-5+3x=7 | | 4p+7=-p-8 |